a2 United States Patent
Dong et al.

US009179183B2

US 9,179,183 B2
*Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54) TRANSCODING MEDIA STREAMS USING
SUBCHUNKING

(71) Applicant: Google Inc., Mountain View, CA (US)

(72) Inventors: Jianpeng Dong, Palo Alto, CA (US);
Krishnan Eswaran, Oakland, CA (US);
Jiening Zhan, Sunnyvale, CA (US);
Vijnan Shastri, Palo Alto, CA (US)

(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/557,863

(22) Filed: Dec. 2,2014
(65) Prior Publication Data
US 2015/0143444 A1l May 21, 2015

Related U.S. Application Data

(63) Continuation of application No. 14/086,541, filed on
Nov. 21, 2013, now Pat. No. 8,955,027.

(51) Imt.ClL
HO4N 7/173 (2011.01)
HO4N 21/44 (2011.01)
(Continued)
(52) US.CL

CPC HO4N 21/44016 (2013.01); HO4N 21/2335
(2013.01); HO4N 21/2343 (2013.01); HO4N
2172347 (2013.01); HO4N 21/2368 (2013.01);
HO4N 21/23424 (2013.01); HO4N 21/23608
(2013.01); HO4N 21/435 (2013.01); HO4N

21/4405 (2013.01); HO4N 21/8456 (2013.01)

(58) Field of Classification Search

USPC ..ccvvvveiecenee 725/109, 114, 116, 93-97, 146
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2007/0230586 Al
2008/0270567 Al

10/2007 Shen et al.
10/2008 Stiers et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 102790905 A 11/2012
CN 102902802 A 1/2013
(Continued)
OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT Applica-
tion No. PCT/US2014/066321 dated Feb. 11, 2015.

Primary Examiner — Mulugeta Mengesha
(74) Attorney, Agent, or Firm — Honigman Miller Schwartz
and Cohn LLP

(57) ABSTRACT

A method including receiving an input media stream and
splitting a video portion of a received portion of the input
media stream into input video chunks. For each input video
chunk of the video portion of the input media stream, the
method includes assigning the input video chunk to one or
more slave transcoders, splitting the input video chunk into
video subchunks, and separately feeding each input video
subchunk to each of the one or more slave transcoders. The
method includes separately receiving output video subchunks
from the one or more slave transcoders. Each output video
subchunk respectively corresponds to one of the input video
subchunks. The method also includes assembling the output
video subchunks into an output video chunk corresponding to
the input video chunk and assembling the output video
chunks into an output media stream.

20 Claims, 6 Drawing Sheets

P

‘J»gm

}\mz

US 9,179,183 B2

Page 2
(51) Int.Cl 2011/0161409 Al 6/2011 Nair et al.
HO4N 21/234 (2011.01) 2012/0030723 Al* 2/2012 Baumetal. ..o 725/105
*
HO4N 21/2347 (2011.01) 20120081745 ALY 112012 Pengetal. oo 375/240.01
HO4N 21/2368 (2011.01) 2013/0114744 Al 52013 Mutton
HO4N 21/435 (2011.01) 2013/0117418 Al 5/2013 Mutton et al.
HO4N 21/4405 (2011.01) 2013/0276048 Al 10/2013 Krasic et al.
HO4N 21/233 (2011.01) 2014/0208374 Al* 7/2014 Delaunay et al. 725/109
HO4N 21/2343 (2011.01)
HO4N 21/236 (2011.01) FOREIGN PATENT DOCUMENTS
HO4N 217845 (2011.01) CN 102902803 A 12013
) CN 102932334 A 2/2013
(56) References Cited P 2005176069 A 6/2005
P 2010287110 A 12/2010
U.S. PATENT DOCUMENTS WO WO0-2013037241 Al 3/2013

WO WO-2013155234 A1 10/2013
2009/0322784 Al 12/2009 Sartori

2011/0082945 A1 4/2011 Myersetal. * cited by examiner

US 9,179,183 B2

Sheet 1 of 6

Nov. 3, 2015

U.S. Patent

_\ . w m ..m ETtTg]

Bunndwon
suoyduBWS [BUOSISY
s @
AN A=
ZA Ve
m\«% ///,N/d// b o \ \mm% %,M.

S 3 Tk pool
wmmﬂwwﬂjﬂ«.\ - ﬁ//“oow

7 v

2001
00} nm\plp HIOMISN n
s (e
j1812 138 0 1g) A
) ﬁ T weang /
SPONINANO)y | 26T s
wmwv | s 1 Lepepnding /9%
A S AN A
S — . / Ib ogr 4 o2
/ % ; 1)

4
N%\M 00g laniag H _
|

T O B

Bz 562 G682
Suponsuel}

_ % f 1BpoOosuRs |
\ [e g%@ BrEIS
vET vEe ¥ET fez

oL —"

US 9,179,183 B2

Sheet 2 of 6

Nov. 3, 2015

U.S. Patent

V¢ Old

aopnag] ebelory

Janieg Buipoosurl}

SOIAB(} AICWUSIN

ﬁ Emm:w / \ Emmbm
mpep IndinG § | eipap indy

\
.

- ~3
PeE 2ee
o~ >~ A
ove ase
omﬁm\d A
-
s01na() Busseooid
3Npow
MnNYogns
S0IA8(]) . Bmmcmﬁ _
soRULIUf YIoMIBN | > | BonosEy

ez O 9IZ
ST s
ﬁ wehy) L\\B
L Buwumens gz & ﬁ._mvao 171}

, . 9AEIS
01z

US 9,179,183 B2

Sheet 3 of 6

Nov. 3, 2015

U.S. Patent

d¢ 9ld

e ™
A Jn ﬁmmnﬁo_& JUNYAgNG e ﬁ weby Sunurang
HURYD A WEaRS wesns
r eipapy ndIng ‘ gipapy Jndu)
¢ . A < <
74 6e8 1254 FANS 21
{eunyaangy (7 SNy SHUNLURGNS) Sungoans
{nding FLoapia nding wag SQE
I o " SO
C
s£7 082 vz etz
iabeueyy e0inosay
AIV
.................... 8ig
SRS (T SO ﬂmxc:gonzwu ﬁ LNy u
L nding i Loepia inding L dnduy 00p1A 1ndu)
»uu(. ------------------ ol g A«c\ /\c!v
562 9€2 vez eee
19POISLEIL BARIS | ¢ © ¢ | japoosumi] aAR|S IBP0ISUBI] BARIS JOpOOSUBL] BAR|S
o ™G N\ {
tzz 0%z 0Z2 072”
Rircd

US 9,179,183 B2

Sheet 4 of 6

Nov. 3, 2015

U.S. Patent

G Old

IPOOSUBLY DAB|S

)

&

(" sepoous ﬁ 18p0080
ﬁ oBpIA L o9pA
o~ ~J

FARY AN

v Old

.

1afeuepy sunossy

ﬁ_@mmmmﬁ Sm@ ?Qmogz qop
A NG

\

;A

e~ =
FAA 4 Ol

ﬁ:/.._
gie

¢ Old

BINPOYY HUMyogns]
é/
,KE«@L
9z¢
suswbag
JBUSHgn
= uh fgau
~7 [
78 cee
mécmsmmm _ "\ IO DTN
sH__J U)
~ o
07¢ 8LE
eponug .) Jepaoad ,,
olpny \H Py J
o~ o7
gig vLE
Pe ™
[seungo m exnusg J
. -{t‘t‘t‘t‘t‘ﬁ%\
L 2ie 0Le /
xN;/\

U.S. Patent

Nov. 3, 2015 Sheet 5 of 6

=)

Y

US 9,179,183 B2

600
f

Recsive Transcoding instructions

Configure Slave Transcoders

4

Recgive Input Media Stream

%

Demuttiplex input Media
Portion and Video Portion

Stream To Qbtain Audio A

Split Video Portion and Audio Portion into Input
Chunks

A

\:d

\.

Qutput Chunks

Transcode Each Input Audio Chunk To Obtain Audio)

J

b4

(

Split Each Input Video Chunk Info input Video
Subchunks

¥

N

Video Chunks

" Transcode Each Video Chunk To Obiain Qutput R

A

\ 4

\.

Chunks Into Quiput Media Stream

(" Assemble Cutput Video Chunks and Cutput Audio h

-

¥

/’

(W

Publish/Deliver Output Media Stream

~

-~ 610

\
Nz

Y

¥

=)

FIG. 6

U.S. Patent Nov. 3, 2015 Sheet 6 of 6 US 9,179,183 B2

(Start] / 700

¥

[Dequsue M Slave Transcoders }.\/716
¥
; ™
Assign Input Video Chunk To The M Slave 747
N\
Transcoders
N J
¥
P
Obtain At Least Some Subchunks Of The | 714
. immediately Preceding Input Video Chunk)
- ¥ N\ 718
Obtain input Video Subchunks Of The Input Viden |
Chunk -
\. S
e ™
Transcode The Input Video Subchunks ~18 o
. S
¥
720
Has One Of The M Transcoders Completed
The Transcoding Job?
& YES
e ™
Retum Cutput Video Chunk ,\/?22
\ /
¥
d ™
Stop Remaining Slave Transcoders T 24
. J
¥
- ~ .
Update Status Of M Slave Transcoders "\/726
N /

=)

FIG. 7

US 9,179,183 B2

1
TRANSCODING MEDIA STREAMS USING
SUBCHUNKING

CROSS REFERENCE TO RELATED
APPLICATIONS

This U.S. patent application is a continuation of, and
claims priority under 35 U.S.C. §120 from, U.S. patent appli-
cation Ser. No. 14/086,541, filed on Nov. 21, 2013, which is
hereby incorporated by reference in its entirety.

TECHNICAL FIELD

This disclosure relates to techniques for transcoding media
streams using subchunking.

BACKGROUND

There is a growing demand to receive live television
streams at user devices such as smartphones and tablets.
Making live television streams available to mobile devices
with low end-to-end latency, however, presents a challenge to
content providers. Current solutions provide end-to-end
latency that may exceed 60 seconds. Such latency measures
are unappealing to customers.

SUMMARY

One aspect of the disclosure provides a method including
receiving an input media stream encoded according to a first
set of encoding parameters. The method also includes split-
ting a video portion of a received portion of the input media
stream into input video chunks, while receiving a remaining
portion of the input media stream. For each input video chunk
of the video portion of the input media stream, the method
further includes assigning the input video chunk to one or
more slave transcoders, splitting the input video chunk into
video subchunks, and separately feeding each input video
subchunk to each of the one or more slave transcoders that
transcode data from the first set of encoding parameters to a
second set of encoding parameters. The method further
includes transcoding each input video subchunk into a corre-
sponding output video subchunk and assembling the output
video subchunks into an output video chunk corresponding to
the input video chunk. The method also includes assembling
the output video chunks into an output media stream.

Implementations of the disclosure may include one or
more of the following features. In some implementations, the
method includes splitting a received portion of the input video
chunk into input video subchunks, while still receiving a
remaining portion of the input video chunk. The method may
also include feeding at least one input video subchunk to the
one or more slave transcoders, while still receiving the
remaining portion of the input video chunk. Fach slave
transcoder may include a slave decoder and a slave encoder.
The slave encoder encodes a first input video subchunk, while
the slave decoder decodes a second input video subchunk.
The method may include assembling the output video chunks
into the output media stream while splitting any remaining
portion of the video portion of the input media stream into
input video chunks.

In some examples, the method includes assigning the input
video chunk to a plurality of slave transcoders. Additionally
or alternatively, one of the plurality of slave transcoders may
complete transcoding the input video chunk, commanding
the other slave transcoders of the plurality of transcoders to
stop transcoding the input video subchunks of the input video

10

15

20

25

30

40

45

50

55

60

65

2

chunk. Additionally or alternatively, the method may include
identifying all of the slave transcoders as being available to
receive another input video chunk, after commanding the
other slave transcoders of the plurality of transcoders to stop
transcoding.

In some implementations, the method includes demulti-
plexing the input media stream into the video portion and an
audio portion of the input media stream, and splitting the
audio portion of the input media stream into input audio
chunks. Each input audio chunk respectively corresponds to
one of the input video chunks of the video portion. Addition-
ally or alternatively, each corresponding pair of input audio
chunk and input video chunk may begin at a same time within
the input media stream and have a substantially similar or
same time length.

For each input audio chunk, the method may include
decoding the input audio chunk into audio samples. When a
lost audio packet within the input audio chunk is detected, the
method may include inserting a silent audio sample into the
audio samples at a location corresponding to the lost audio
packet and encoding the audio samples into an output audio
chunk. Additionally or alternatively, the method may include
assembling the output video chunks into the output video
stream, including aligning each output audio chunk with a
corresponding output video chunk.

In some implementations, the method includes retrieving
the one or more slave transcoders from a queue of available
transcoders. When one or more slave transcoders completes
transcoding an assigned input video chunk, the method may
include releasing the one or more transcoders back into the
queue of transcoders.

For each input video chunk, the method may include
obtaining at least one preceding input video subchunk of a
preceding input video chunk that immediately precedes the
input video chunk. The method may include feeding at least
one preceding input video subchunk to the one or more slave
transcoders before feeding the input video subchunks of the
input video chunk. The method may further include publish-
ing the output media stream, and transmitting the output
media stream to a user device.

Another aspect of the disclosure provides a transcoding
server including a non-transitory computer readable medium,
a plurality of slave transcoders and a processing device. The
non-transitory computer readable medium stores computer
readable instructions. The plurality of slave transcoders
transcode data from a first set of encoding parameters to a
second set of encoding parameters. The processing device is
in communication with the computer readable medium and
executes the computer readable instructions. The computer
readable instructions cause the processing device to receive
an input media stream encoded according to the first set of
encoding parameters. The computer readable instructions
also cause the processing device to split a video portion of a
received portion of the input media stream into input video
chunks, while receiving a remaining portion of the input
media stream. For each input video chunk of the video portion
of the input media stream, the processing device assigns the
input video chunk to one or more slave transcoders, splits the
input video chunk into input video subchunks, separately
feeds each input video subchunk to each of the one or more
slave transcoders that transcode the input video subchunk into
an output video subchunks. When one of the one or more
slave transcoders transcodes all of the input video subchunks
of'the input video chunk to output video subchunks, the slave
transcoder assembles the output video subchunks into an
output video chunk. The processing device receives the out-
put video chunk corresponding to the input video chunk from

US 9,179,183 B2

3

the one slave transcoder and assembles the output video
chunks into an output media stream.

In some implementations, the processing device splits a
received portion of the input video chunk into input video
subchunks, while still receiving a remaining portion of the
input video chunk. The processing device further feeds at
least one input video subchunk to the one or more slave
transcoders while still receiving the remaining portion of the
input video chunk. The processing device may assemble the
output video chunks in to the output media stream while
splitting any remaining portion of the video portion of the
input media stream into input video chunks.

Each slave transcoder may include a slave decoder and a
slave encoder. The slave encoder encodes a first input video
subchunk, while the slave decoder decodes a second input
video subchunk. The processing device may further assign
the input video chunk to a plurality of slave transcoders.
Additionally or alternatively, when one of the plurality of
slave transcoders completes transcoding the video chunk, the
processing device may command the other slave transcoders
of the plurality of transcoders to stop transcoding the input
video subchunks of the input video chunk. Additionally or
alternatively, after commanding the other slave transcoders of
the plurality of transcoders to stop transcoding, the process-
ing device may identify all of the slave transcoders as being
available to receive another input video chunk.

In some examples, the processing device demultiplexes the
input media stream into the video portion and an audio por-
tion of the input media stream and splits the audio portion of
the input media into input audio chunks. Each input audio
chunk respectively corresponds to one of the input video
chunks of the video portion. Each corresponding pair of input
audio chunk and input video chunk may begin at a same time
within the input media stream and have a substantially similar
or same time length.

For each input audio chunk, the processing device may
decode the input audio chunk into audio samples. When a lost
audio packet within the input audio chunk is detected, the
processing device may insert one or more silent audio
samples into the audio samples at a location corresponding to
the lost audio packet. The processing device may further
encode the audio samples into an output audio chunk. Addi-
tionally or alternatively, the server may assemble the output
video chunks into the output video stream, including aligning
each output audio chunk with a corresponding output video
chunk. In some examples, the server assembles multiple out-
put streams, where each output stream separately contains
video output chunks or audio output chunks, but not both.

In some examples, the processing device retrieves the one
or more slave transcoders from a queue of available transcod-
ers. When the one or more slave transcoders completes
transcoding an assigned input video chunk, the processing
device releases the one or more transcoders back into the
queue of transcoders. The processing device may publish the
output media stream and transmit the output media stream to
a user device. The processing device may execute the slave
transcoders, and the slave transcoders may execute on one or
more other processing devices in communication with the
processing device.

Another aspect of the disclosure provides a transcoding
server including a non-transitory computer readable medium,
a plurality of slave transcoders and a processing device. The
non-transitory computer readable medium stores computer
readable instructions. The plurality of slave transcoders
transcode data from a first set of encoding parameters to a
second set of encoding parameters. The processing device is
in communication with the computer readable medium and

10

15

20

25

30

35

40

45

50

55

60

65

4

executes the computer readable instructions. The computer
readable instructions cause the processing device to receive
an input media stream encoded according to the first set of
encoding parameters. The computer readable instructions
also cause the processing device to split a video portion of a
received portion of the input media stream into input video
chunks, while receiving a remaining portion of the input
media stream. For each input video chunk of the video portion
of the input media stream, the processing device assigns the
input video chunk to one or more slave transcoders, splits the
input video chunk into input video subchunks, and separately
feeds each input video subchunk to each of the one or more
slave transcoders. The processing device also receives output
video subchunks from the one or more slave transcoders and
assembles the output video subchunks into an output video
chunk corresponding to the input video chunk. Each output
video chunk respectively corresponds to one of the input
video subchunks. The processing device further includes
assembling the output video chunks into an output media
stream.

In some implementations, the processing device splits a
received portion of the input video chunk into input video
subchunks, while still receiving a remaining portion of the
input video chunk. The processing device further feeds at
least one input video subchunk to the one or more slave
transcoders while still receiving the remaining portion of the
input video chunk. The processing device may assemble the
output video chunks into the output media stream while split-
ting any remaining portion of the video portion of the input
media stream into input video chunks.

Each slave transcoder may include a slave decoder and a
slave encoder. The slave encoder encodes a first input video
subchunk, while the slave decoder decodes a second input
video subchunk. The processing device may further assign
the input video chunk to a plurality of slave transcoders.
Additionally or alternatively, when one of the plurality of
slave transcoders completes transcoding the video chunk, the
processing device may command the other slave transcoders
of the plurality of transcoders to stop transcoding the input
video subchunks of the input video chunk. Additionally or
alternatively, after commanding the other slave transcoders of
the plurality of transcoders to stop transcoding, the process-
ing device may identify all of the slave transcoders as being
available to receive another input video chunk.

In some examples, the processing device demultiplexes the
input media stream into the video portion and an audio por-
tion of the input media stream and splits the audio portion of
the input media into input audio chunks. Each input audio
chunk respectively corresponds to one of the input video
chunks of the video portion. Each corresponding pair of input
audio chunk and input video chunk may begin at a same time
within the input media stream and have a substantially similar
or same time length.

For each input audio chunk, the processing device may
decode the input audio chunk into audio samples. When a lost
audio packet within the input audio chunk is detected, the
processing device may insert a silent audio sample into the
audio samples at a location corresponding to the lost audio
packet. The processing device may further encode the audio
samples into an output audio chunk. Additionally or alterna-
tively, the server may assemble the output video chunks into
the output video stream, including aligning each output audio
chunk with a corresponding output video chunk.

In some examples, the processing device retrieves the one
or more slave transcoders from a queue of available transcod-
ers. When the one or more slave transcoders completes
transcoding an assigned input video chunk, the processing

US 9,179,183 B2

5

device releases the one or more transcoders back into the
queue of transcoders. The processing device may publish the
output media stream and transmit the output media stream to
a user device. The processing device may execute the slave
transcoders, and the slave transcoders may execute on one or
more other processing devices in communication with the
processing device.

The details of one or more implementations of the disclo-
sure are set forth in the accompanying drawings and the
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and from
the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic view illustrating an example system
for delivering media stream to a user device.

FIG. 2A is a schematic view illustrating example compo-
nents of a transcoding server.

FIG. 2B is a schematic view illustrating an example data
flow of the transcoding server.

FIG. 3 is a schematic view illustrating example compo-
nents of a subchunking module.

FIG. 4 is a schematic view illustrating example compo-
nents of a resource manager.

FIG. 5 is a schematic view illustrating example compo-
nents of a slave transcoder.

FIG. 6 is a schematic view of an example set of operations
of'a method for delivering a media stream to a user device.

FIG. 7 is a schematic view of an example set of operations
of'a method for transcoding an input video chunk.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary system 10 for delivering a
media stream to a user device 100. In some implementations,
a transcoding server 200 receives an input media stream 232
from a content provider 120. The input media stream 232
contains the media content and is encoded according to a first
set of encoding parameters (e.g., a 1080p MP4 encoding).
The transcoding server 200 may receive the input media
stream 232 from any suitable source, including by way of
transmission from a satellite 120A and/or a content server
120B via a network 110. In some examples, the input media
stream 232 is a live television stream, e.g., a live television
broadcast that is to be transmitted to one or more user devices
100. Additionally or alternatively, the input media stream 232
is a requested media content that is requested from a user
device (e.g., video-on-demand service).

The transcoding server 200 transcodes the input media
stream 232 into an output media stream 239 encoded accord-
ing to a second set of parameters (e.g., 720p MP4 encoding).
The transcoding server 200 (or another server) can transmit
the output media stream 239 to a user device 100. Examples
of'user devices include, but are not limited to, tablet comput-
ing devices 100A, smartphones 100B, personal computing
devices 100C, and set-top-boxes 100D. The user device 100
can play the output media stream 239 via one or more user
interfaces (e.g., display device and/or speaker). An input or
output media stream 232, 239 may include a video portion
232" and/or an audio portion 232". The user devices 100 can
request the output media stream 239 in any suitable manner.
For instance, in the case of a smartphone or tablet type of user
device 100, a user may access a dedicated application on the
user device 100. In the application, the user can select a media

15

20

25

30

35

40

45

6

stream (e.g., a channel or video). The user device 100 trans-
mits a request to the transcoding server 200 (or a server
associated therewith) requesting the selected content. In
response to the request, the transcoding server 200 (or an
associated server) can stream an output media stream 239 to
the user device 100. The output media stream 239 can be
encoded with parameters suitable for the user device 100.

In operation, the transcoding server 200 demultiplexes the
input media stream 232 into a video portion 232" and an audio
portion 232" (that is when the media stream includes an audio
portion and a video portion). The transcoding server 200
splits the video portion 232' of the input media stream 232
into a plurality of input video chunks 233 and each input
video chunk 233 into a plurality of input video subchunks
234. An input video chunk 233 is a segment of video data of
the input media stream 232. An input video subchunk 234 is
a segment of an input video chunk 233. In some implemen-
tations, each of the input video chunks 233 is split into equal
size segments (e.g., five milliseconds). Similarly, each of the
input video subchunks 234 is split into equal size subseg-
ments (e.g., 0.5 milliseconds). Thus, each of the input video
chunks 233 includes an equal number of input video sub-
chunks 234. For purposes of clarity, video chunks 234 and
video subchunks 233 that have not yet been transcoded by the
transcoding server 200 are referred to as input video chunks
233 and input video subchunks 234.

The transcoding server 200 assigns each input video chunk
233 of the input media stream 232 to one or more available
slave transcoders 220. The transcoding server 200 feeds the
video subchunks 234 of a respective video chunk 233 to the
one or more slave transcoders 220 to which the respective
video chunk 233 was assigned. The one or more slave
transcoders 220 transcode each of the input video subchunks
234 into output video subchunks 235. In some implementa-
tions, the one or more slave transcoders 220 assemble output
video chunks 236 that correspond to respective input video
chunks 233 using the output video subchunks 235. The slave
transcoders 220 can return output video chunks 236. In some
implementations, the slave transcoders 220 can output indi-
vidual output video subchunks 235, which are subsequently
assembled into an output video chunk 236. The slave
transcoders 220 may be implemented as part of the transcod-
ing server 200 or may be external to the transcoding server
200.

In some implementations, the transcoding server 200
assigns each input video chunk 233 to a plurality of slave
transcoders 220 (e.g., three slave transcoders 220). Then the
transcoding server 200 feeds the input video subchunks 234
of'the input video chunk 233 to the assigned slave transcoders
220. The assigned slave transcoders 220 transcode the input
video subchunks 234 until one of the assigned slave transcod-
ers 220 completes transcoding the input video chunk 233 into
an output video chunk 236. Once completed, the transcoding
server 200 can stop the other slave transcoders 220. The
transcoding server 200 can change the state of all of the
assigned slave transcoders 220 to available.

In scenarios where the input media stream 232 includes an
audio portion 232", the transcoding server 200 can transcode
the audio portion 232". In some implementations, the
transcoding server 200 can divide the audio portion 232" into
a series of input audio chunks 237. The transcoding server
200 transcodes the input audio chunks 237 into output audio
chunks 238. In some implementations, the input audio chunks
237 are split into input audio subchunks (not shown), which
are transcoded into output audio subchunks (not shown). The
output audio subchunks are assembled into the output audio
chunks 238.

US 9,179,183 B2

7

The transcoding server 200 can assemble the output media
stream 239 based on the output video chunks 236 and output
audio chunks 238. The transcoding server 200 (or another
server associated with the transcoding server 200) can deliver
the output media stream to one or more user devices 100 via
the network 110.

FIGS. 2A and 2B illustrate an example of a transcoding
server 200. FIG. 2 A illustrates components of the transcoding
server 200. FIG. 2B illustrates an example data flow of the
transcoding server 200. The transcoding server 200 may
include a processing device 210, a memory device 230, a
storage device 240, and a network interface device 250. The
components of the transcoding server 200 may be connected
by one or more busses and/or a network 110. While the
transcoding server 200 is illustrated as a device at a single
location, the transcoding server 200 may be implemented in a
distributed manner, such that components may be imple-
mented as multiple devices at different physical locations. In
such scenarios, the components may communicate over a
network 110 (e.g., the Internet and/or one or more intranets).

The processing device 210 includes one or more physical
processors that execute computer-readable instructions (e.g.,
executable computer code). In implementations where the
processing device 210 includes two or more processors, the
two or more processors can operate in an individual or dis-
tributed manner. The processing device 210 can execute a
streaming agent 212, a subchunk module 214, a resource
manager 216, a live chunk manager 218, and a plurality of
slave transcoders 220, all of which may be implemented as
computer readable instructions. The foregoing components
collectively form a transcoding pipeline. In some implemen-
tations, some of the executed components are implemented at
different physical devices. For instance, the live chunk man-
ager 218 and the streaming agent 212 may execute at a first
location/device and the subchunk module 214, the resource
manager, and the slave transcoders 220 may execute at a
second location/device. Moreover, the slave transcoders 220
may execute on one or more other processing devices 210 in
communication with the processing device 210.

The memory device 230 includes one or more volatile,
non-transitory computer-readable mediums (e.g., RAM and/
or ROM). The memory device 230 can store portions of the
input media stream 232 and portions of the output media
stream 239. The memory device 230 can further store the
computer readable instructions discussed above.

The storage device 240 includes one or more non-volatile,
non-transitory computer-readable mediums (e.g., flash disk,
HDD, or the like). The storage device 240 can store any
suitable data, including input video chunks 233 and its cor-
responding subchunks 234, output video chunks 236 and its
corresponding subchunks 235, input audio chunks 237 and its
corresponding subchunks, and output audio chunks 239 and
its corresponding subchunks. The storage device 240 can
additionally store metadata corresponding to the audio and
video data.

The network interface device 250 receives data from and
transmits data to the network 110. The network interface
device 250 can include one or more devices that communicate
with the network 110. The network interface device 250 can
perform wired and/or wireless communication.

The streaming agent 212 is the entry point of the transcod-
ing pipeline. The streaming agent 212 receives input media
streams 232 from various content sources 120. An individual
input media stream 232 may be received as a series of data
packets or as an analog signal. In the case of digital input
media streams 232, each packet of an input media stream 232
may include audio data and/or video data as well as metadata

10

15

20

25

30

35

40

45

50

55

60

65

8

regarding the input media stream 232. Examples of metadata
regarding the input media stream 232 include, but are not
limited to, a name of the stream (e.g., NBCUHD for a live
stream received from NBC®), a timestamp of the data con-
tained in the data packet, encoding parameters of the input
media stream 232 (e.g., H264__1080p). The streaming agent
212 can store the input media stream 232 in the memory
device 230 and/or can provide the input media stream 232 to
the subchunk module 214. In scenarios where the input media
stream 232 is an analog signal, the streaming agent 212 can
include an analog-to-digital converter which converts the
analog input media stream 232 to a digital input media stream
232.

The subchunk module 214 obtains the input media stream
232 from the streaming agent 212 and/or from the memory
device 230. The subchunk module 214 demultiplexes the
input media stream 232 to obtain a video portion 232' and an
audio portion 232" of the input media stream 232. The sub-
chunk module 214 splits the video portion 232' of the input
media stream 232 into a series of video chunks 233 and each
video chunk 233 into a series of video subchunks 234. The
subchunk module 214 provides the video subchunks 234 and
optionally the video chunks 233 to the resource manager 216.

The subchunk module 214 may be further configured to
transcode the audio portion 232" of the input media stream
232. The subchunk module 214 splits the transcoded audio
portion 232" into input audio chunks 237. The subchunk
module 214 transcodes the input audio chunks 237 into out-
put audio chunks 238. The output audio chunks 238 are used
to assemble the output media stream 239 and can also be
communicated to the resource manager 216 for storage and
debugging purposes.

The resource manager 216 receives the input video sub-
chunks 234 of each input video chunk 233. For each input
video chunk 233, the resource manager 216 assigns the input
video chunk 233 to one or more slave transcoders 220. When
the resource manager 216 begins receiving the video sub-
chunks 234 of a new video chunk 233, the resource manager
216 assigns the new video chunk 233 to m slave transcoders
(where m is greater than or equal to one). In some implemen-
tations, available slave transcoders 220 wait in a first-in-first-
out (FIFO) queue 220'. The resource manager 216 selects the
m slave transcoders 220 based on the ordering of the queue
220'.

In implementations where m is greater than one, the
resource manager 216 feeds each video subchunk 234 of the
new video chunk 233 to each of the m slave transcoders. The
slave transcoders 220 return output video chunks 236 to the
resource manager 216. When one of the m transcoders 220
finishes transcoding the entire video chunk 233, the resource
manager 216 can stop the other m-1 slave transcoders 220. A
slave transcoder 220 finishes an entire video chunk 233 when
the slave transcoder 220 has transcoded all of the input video
subchunks 234 of the input video chunk 233 and returned a
corresponding output video chunk 236 to the resource man-
ager 216. Once the resource manager stops the m-1 slave
transcoders, the state of the m slave transcoders 220 is
changed to available and the m slave transcoders 220 return to
the queue 220'". In this way, the transcoding of a video chunk
224 isless likely to be delayed by a slow slave transcoder 220.
Furthermore, these implementations offer redundancy in the
case that one or more of the m slave transcoders 220 fails.
Moreover, it is less likely that an input video chunk 233 is
unable to be transcoded.

In some implementations, the resource manager 216
returns output video chunks 236 to the subchunk module 214.
In some implementations, the resource manager 216 also

US 9,179,183 B2

9

writes the output video subchunks 235 and output video
chunks 236 to the storage device 240 for later analysis and/or
debugging purposes.

The subchunk module 214 assembles the output media
stream 239 based on the output video chunks 236 and the
output audio chunks 238. The subchunk module 214 can
assemble the output media stream 239 according to one or
more protocols. For instance, the subchunk module 214 can
generate the output media stream 239 according to the MPEG
Dynamic Adaptive Streaming over HT'TP (DASH) protocol
and/or the Apple HTTP Live Streaming (HLS) protocol. The
subchunk module 214 can generate the output media stream
239 as the output video chunks 236 and corresponding
transcoded audio chunks 238 become available. The sub-
chunk module 214 publishes the output media stream 239 to
the live chunk manager 218.

The live chunk manager 218 is the exit point of the
transcoding pipeline. The live chunk manager 218 receives
portions of the output media stream 239 as the portions are
published by the subchunk module 214. The live chunk man-
ager 218 can distribute the output media stream 239 to one or
more user devices 100. The live chunk manager 218 receives
requests for a particular media stream 239 and serves the
output media stream 239 to the requesting user devices 100
accordingly.

FIG. 3 illustrates an example subchunk module 214. In
some implementations, the subchunk module 214 is config-
ured to generate output media streams 232 encoded according
to different encoding standards. In the illustrated example, the
example subchunk module 214 can generate output media
streams 232 encoded according to MPEG Dynamic Adaptive
Streaming over HI'TP (DASH) or Apple HTTP Live Stream-
ing (HLS). Moreover, in the illustrated example, the sub-
chunk module 214 can include a demuxer 310, a chunker 312,
an audio decoder 314, an audio encoder 314, an MPEG muxer
318, an HLS segmenter 320, a publisher 322, a dash seg-
menter 324, and a subchunk manager 326.

In operation, the demuxer 310 receives the input media
stream 232 and demultiplexes the input media stream 232 into
the video portion 232' and the audio portion 232". In some
implementations, the demuxer 310 calls a preexisting library
(e.g., the Ffmpeg third-party library) to demultiplex the input
media stream 232 into separate audio portions 232" and video
portions 232'. The demuxer 310 outputs the audio portion
232" and video portion 232' as a series of data packets. The
demuxer 310 may alternatively be a hardware component that
is in communication with the processing device 210.

The chunker 312 receives the audio portion 232" and the
video portion 232' of the input media stream 232 and splits the
respective portions into audio chunks 237 and video chunks
233. In some implementations, the chunker 312 outputs input
video chunks 233 and input audio chunks 237 that are sub-
stantially similar or equal in time length (e.g., five seconds).
Furthermore, each input video chunk 233 can have a corre-
sponding input audio chunk 237 that starts and ends at the
same relative time. For instance, if an input video chunk 233
begins at time stamp 0.15 seconds, then the chunker 312 splits
an input audio chunk 237 that also begins at timestamp 0.15
seconds. The chunker 312 can assign each input video chunk
233 a chunk identifier (“chunk 1D”) that identifies the input
video chunk 233 from other input video chunks 233 of the
input media stream 232. Similarly, the chunker 312 can assign
chunk identifiers to each input audio chunk 237. In some
implementations, corresponding audio chunks 237 and video
chunks 233 may be assigned the same or corresponding

10

15

20

25

30

35

40

45

50

55

60

65

10
chunk identifiers. Additionally, input video chunks 233 and
audio chunks 237 can be tagged by a chunk type (e.g., audio
or video).

For each input video chunk 233, the chunker 312 can split
the input video chunk 233 into a series of input video sub-
chunks 234. The chunker 312 can assign each input video
subchunk 234 a subchunk identifier (“subchunk ID”) that
identifies the input video subchunk 234 from other input
video subchunks 234 of the input video chunk 233. The
chunker 312 splits input video subchunks 234 into equal time
divisions, such that each input video chunk 233 has the same
number of input video subchunks 234 having substantially
similar or same time lengths. In this way, the video portion
232' of the input media stream 232 is organized in a series of
video chunks 233 and video subchunks 234. A single video
chunk 233 includes an ordered list of video subchunks 234. In
some implementations, the subchunks 234 are ordered by
their subchunk ID (e.g., a timestamp) and are uniquely iden-
tified by the chunk ID. The input video subchunks 234 may
each further include an identifier that identifies the input
video chunk 233 to which the input video subchunk 234
belongs and the type of the subchunk 234 (e.g., video).

In some implementations, the chunker 312 can split each
input audio chunk 237 into a series of input audio subchunks.
In these implementations, the chunker 312 can assign each
audio subchunk a subchunk ID. The input audio subchunks
may each further include an identifier that identifies the input
audio chunk 237 to which the input audio subchunk belongs
and the type of the subchunk (e.g., audio).

Output video chunks 236, output audio chunks 238, output
video subchunks 235, and output audio subchunks may
include similar fields as the input counterparts. For example,
the output video and audio chunks 236, 238 can indicate a
type of the chunk. Similarly, the output video subchunks 235
and output audio chunks can include an identifier that iden-
tifies the chunk to which the subchunk belongs.

The chunker 312 may be further configured to analyze the
video portion 232' of the input video stream 232 for lost video
packets. In these implementations, the chunker 312 can flag
an input video chunk 233 as damaged if one or more video
packets in the input video chunk 233 are lost or damaged. In
operation, the chunker 312 monitors the incoming video por-
tion 232' of the input stream for a discontinuity in the stream.
The discontinuity can occur within a single input video chunk
233 or across a boundary of two neighboring input video
chunks 233. In either scenario, when an input video chunk
contains a discontinuity, the chunker 312 labels the input
video chunk 233 locally as damaged by marking a subchunk
flag field (e.g., marking the subchunk flag field as “BaD”). In
some implementations, the chunker 312 marks all subsequent
subchunks 234 in the input video chunk 233 as damaged as
well. These subchunks 234 are subsequently written to the
resource manager 216, which provides the subchunks 234 to
the slave transcoders 220. When a slave transcoder 220 pro-
cesses an input video subchunk 234 marked as damaged, the
slave transcoder 220 continues to read the damaged sub-
chunks 234, until it reaches the last subchunk of the input
video chunk 233 marked as such. At this point, the slave
transcoder 220 generates a new output video chunk 236 (com-
prised of flagged output video subchunks 235) using pre-
loaded key/sync frames, marks the output video chunk 236 as
such, and writes the flagged output video chunk 236 to the
resource manager 216. In some implementations, the flagged
output video chunk 236 is comprised of repeated numbers of
the same, fixed, and preloaded key/sync frames. The output
video chunk 236 may contain a single output video subchunk
235, marked as “BaD”.

US 9,179,183 B2

11

The audio decoder 314 receives and decodes the input
audio chunks 237 ofthe audio portion 232" of the input media
stream 232. In some implementations, the audio decoder 314
decodes audio chunks into pulse-code modulation (“PCM”)
samples. The audio decoder 314 may be configured to detect
lost audio packets in an audio chunk 237. Ifthe audio decoder
314 detects a lost audio packet, the audio decoder 314 inserts
a silent audio PCM sample into the PCM samples of the audio
chunk 237.

The audio encoder 316 receives the series of PCM samples
and encodes the PCM samples into output audio chunks 238.
The audio encoder 316 encodes the PCM samples into any
suitable format (e.g., AAC). The encoder 316 can assign the
chunk ID to the output audio chunk 238, where the chunk ID
is the same as or corresponds to the chunk ID of the input
audio chunk 237 used to generate the output audio chunk 238.

The subchunk manager 326 is an interface between the
subchunk module 214 and the resource manager 216. The
subchunk manager 326 receives video chunks 233 and sub-
chunks 234 from the chunker 312 and writes the input video
chunks 233 and subchunks 234 to the resource manager 216.
In some implementations, the subchunk manager 326 can
write input video subchunks 234 to the resource manager 216
while the chunker 312 is receiving subsequent audio and
video portions of the respective input chunk 233, 237 from the
demuxer 310. In this way, the subchunk manager 326 com-
municates earlier video subchunks 234 to the resource man-
ager 312 before subsequent video subchunks 234 of the same
input video chunk 233 are received by the chunker 312, the
demuxer 310, or in some scenarios the streaming agent 212.
In these implementations, latency times of the media stream
may be reduced as the transcoding of a chunk 233 can com-
mence before the transcoding server 200 receives the entire
input video chunk 233. In some implementations, the sub-
chunk manager 326 may be further configured to write the
output audio chunks 238 and/or output audio subchunks to
the resource manager 216.

The subchunk manager 326 receives output video chunks
236 from the resource manager 216. The resource manager
216 can write an output video chunk 236 to subchunk man-
ager 326 as the output video chunk 236 is written to the
resource manager 216. The subchunk manager 326 can pro-
vide the received output video chunks 236 to the MPEG
muxer 318 and/or the dash segmenter 324, depending on the
format for transmission of the output media stream 239. For
instance, if the output media stream 239 is to be transmitted as
an HLS stream, then the subchunk manager 326 provides the
received output video chunks 236 and corresponding output
audio chunks 238 to the MPEG muxer 318. If the output
media stream 239 is to be transmitted as a DASH stream, then
the subchunk manager 326 provides the received output video
chunks 236 and corresponding output audio chunk 238 or
audio subchunks to the DASH segmenter 324. The subchunk
manager 326 can identify corresponding output audio chunks
238 and output video chunks 236 based on their respective
chunk identifiers or their respective timestamps. In some
implementations, one or more of the chunker 312 and the
resource manager 216 can perform some or all of the func-
tions of the subchunk manager 326.

When the output media stream 239 is an HLS stream, the
MPEG muxer 318 multiplexes the output audio chunks 238
and corresponding output video chunks 236 to a suitable
MPEG format (e.g., MPEG-2 TS) to obtain the output media
stream 239. The HLS segmenter 320 receives the output
media stream 239 as a MPEG-2 transport stream and outputs
the output media stream 239 as a series of equal-length files.
The HLS segmenter 320 outputs the segmented output media

5

10

15

20

25

30

35

40

45

55

60

65

12

stream 239 to the publisher 322. The publisher 322 publishes
the segmented output media stream 239 to the live chunk
manager 218. The publisher 322 publishes the segments of
the output media stream 239 as they are received. In this way,
the live chunk manager 218 can distribute the output media
stream 239 in real time or close to real time.

When the output media stream 239 is a DASH stream, the
output audio chunks 238 and corresponding output video
chunks 236 do not need to be multiplexed. Thus, the output
audio chunks 238 and corresponding output video chunks
236 are communicated to the DASH segmenter 324. The
DASH segmenter 324 receives the output audio chunks 238
and corresponding output video chunks 236 and generates the
output media stream 239 as a series of small HTTP file seg-
ments. The DASH segmenter 324 writes the output media
stream 239 to the publisher 322. The publisher 322 publishes
the segments of the output media stream 239 as they are
received.

The example subchunk module 214 of FIG. 3 is configured
to provide DASH media streams and HL.S media streams. The
subchunk module 214 can be adapted, however, to output
other suitable types of media streams, now known or later
developed. The subchunk module 214 is provided for
example and variations of the subchunk module 214 are
within the scope of the disclosure. The subchunk module 214
may include other components not shown in FIG. 3. For
example, the subchunk module 214 can include one or more
encryption modules that encrypt the output media streams
239.

FIG. 4 illustrates an exemplary resource manager 216 that
includes a job allocator 410 and a data manager 412. The job
allocator 410 receives a transcoding job 412. The transcoding
job 412 includes an identifier of the input media stream 232
(e.g., achannel identifier or content file identifier) and a set of
encoding parameters for the output media stream 239. The
job allocator 410 configures the slave transcoders 220 to
transcode the input subchunks 233 into the output video sub-
chunks 235 and chunks 236 according to the encoding param-
eters for the output media stream 239. The encoding param-
eters can include a video resolution, a target bit rate, a video
codectype, atarget GOP size, or any other suitable parameter.

The job allocator 410 assigns received input video chunks
233 of the input media stream 232 to m slave transcoders 220,
where m is an integer greater than or equal to one. The job
allocator 410 assigns the m slave transcoders 220 from a
plurality of slave transcoders 220. The plurality of slave
transcoders 220 can be arranged in an array or queue 220’ or
some similar structure. In some implementations, the queue is
a FIFO queue that maintains slave transcoders 220 in an
available state. When the job allocator 410 receives an input
video subchunk 234 of a new input video chunk 233, the job
allocator 410 dequeues m slave transcoders 220 from the
queue and assigns the new input video chunk 233 to the
dequeued slave transcoders 220. Once the job allocator 410
assigns the new input video chunk 233 to the m slave
transcoders 220, the job allocator 410 begins feeding the
input video subchunks 234 to the assigned slave transcoders
220. As each of the m slave transcoders 220 transcodes the
input video subchunks 234, the slave transcoders 220 return
the output video chunks 236 comprised of output video sub-
chunks 235 to the job allocator 410. The job allocator 410 can
return the output video chunks 236 to the subchunk module
214.

The job allocator 410 feeds each input video subchunk 234
to each of the m slave transcoders 220 until one of the m slave
transcoders 220 completes transcoding the entire input video
chunk 233. Upon determining that one of the m slave

US 9,179,183 B2

13
transcoders 220 has completed transcoding all of the video
subchunks 234 of the assigned input video chunk 233, the job
allocator 410 can stop the other m-1 slave transcoders 220,
update the state of all of the m slave transcoders 220 to
available, and return the m slave transcoders 220 to the queue
220'.

The job allocator 410 can continue to operate in the fore-
going manner for the duration of the input media stream 232.
The job allocator 410 can cycle through the slave transcoders
220 and can have multiple sets of m slave transcoders 220
transcoding different input video chunks 233 concurrently.
For example, the job allocator 410 can begin the transcoding
of a subsequent input video chunk 233 by a set of m slave
transcoders 220 while a previous input video chunk 2333 is
still being transcoded by a different set of m slave transcoders
220. In this way, the latency times for transcoding the input
media stream 232 can be reduced.

The data manager 412 stores input video chunks 233 and
output video chunks 236 in the memory device 230 and the
storage device 240. The job allocator 410 may provide
received video chunks 233 and returned output video chunks
236 to the data manager 412.

The data manager 412 can write one or more copies of each
input video chunk 233 to the memory device 230. In some
implementation, an input video chunk 233 is stored as the
series of input video chunks 233. When storing the input
video chunk 233, the data manager 412 can index each of the
input video chunks 233 in the memory device 230 using the
chunk ID of the video chunk 233. Similarly, the data manager
412 can index each of the input video subchunks 234 memory
device 230 using the subchunk ID of the video subchunk 234.
In some implementations, the data manager 412 uses public
data structures to allow the subchunk module 214 to write
data to memory device 230 and to allow a slave transcoder
220 to read data from the memory device 230.

The data manager 412 also writes one or more copies of
each output video chunk 236 memory device 230. In some
implementations, the data manager 412 stores the transcoded
frames and/or the subchunks 234 of each output video chunk
236. The data manager 412 can index each of the output video
chunks 236 in the memory device 230 using the chunk ID of
the chunk 236. Additionally, the data manager 412 can index
each output video subchunk 235 in the memory device 230
using the subchunk ID of the subchunk 235. In some imple-
mentations, the data manager 412 uses public data structures
to allow the subchunk module 214 to read data from the
memory device 230 and to allow the slave transcoder 220 to
write data to the memory device 230.

In some implementations, the data manager 412 also stores
one or more copies of each input audio chunk 237 and output
audio chunk 238 in the memory device 230. The input audio
chunk 237 and output audio chunks 238 can be referenced by
their respective chunk ID. Further, the data manager 412 can
use public data structures that allow the subchunk module 214
to read and write audio data from the storage device 240.

For purposes of debugging, the data manager 412 can
replicate the data stored in the memory device 230 in the
storage device 240. For example, the input and output video
chunks 233, 236 and input and output audio chunks 237, 238
can be stored in the storage device 240 in a .cns files. Further-
more, metadata corresponding to the input and output video
chunks 233, 236 and input and output audio chunks 237, 238
can be stored in the storage device 240.

FIG. 5 illustrates an example slave transcoder 220. A slave
transcoder 220 is responsible for transcoding input video
chunks 233. The slave transcoders 220 read input video

10

15

20

25

30

35

40

45

50

55

60

65

14
chunks 233 from the resource manager 216 and write output
video subchunks 235 of an output video chunk 236 to the
resource manager 216.

Each slave transcoder 220 can reside one of three different
states: “uninitialized”, “available”, and “busy”. Before a
slave transcoder 220 has been configured to encode input
video chunks 233 according to a set of encoding parameters,
the state of the slave transcoder 220 is uninitialized. Once the
slave transcoder 220 is initialized/configured and has been
entered into the queue 220', the resource manager 216
changes the state of the slave transcoder 220 to available.
When a slave transcoder 220 is in the “available” state, the
slave transcoder 220 is ready to perform transcoding. In some
implementations, a slave transcoder 220 periodically reports
its state as available. A slave transcoder 220 must be in the
available state to receive a transcoding job. When the resource
manager 216 assigns an input video chunk 233 to the slave
transcoder 220, the resource manager 216 changes the status
of the slave transcoder 220 to busy. When a slave transcoder
220 is in the busy state it is transcoding an input video chunk
233 and cannot be assigned another transcoding job. When
the slave transcoder 220 finishes transcoding an input video
chunk 233, the slave transcoder 220 returns the output video
chunk 236 to the resource manager and the resource manager
216 updates the state of the slave transcoder to available.

The slave transcoders 220 each include a video decoder
510 and a video encoder 512. In some implementations, the
video decoder 510 decodes the input video subchunks 234
into raw YUV frames. The video encoder 512 encodes the raw
YUYV frames into the output video subchunks 235. The video
encoder 512 encodes the output video subchunks 235 accord-
ing to the encoding parameters. These two concatenating
stages (decoding followed by encoding) are implemented in
order to parallelize decoding and encoding so that the raw
YUV frames coming out of the decoding stage can be imme-
diately pushed to the subsequent encoding stage for encoding.

In operation, the resource manager 216 assigns a transcod-
ing job (i.e., a input video chunk 233 to be transcoded) to a
slave transcoder 220. The resource manager 216 216 provides
a chunk ID of the input video chunk 233 that is to be
transcoded, an chunk ID to provide to the output video chunk
234, and the encoding parameters of the output video chunk
234. At the onslaught of the transcoding, the resource man-
ager 216 can initialize all of the slave transcoders 220 to
encode the output video chunks 236 according to the encod-
ing parameters. Furthermore, the slave transcoders 220 can
load predefined sync/key frames (IDR in H264/AVC) for
error handling purpose upon being initialized.

The slave transcoder 220 begins reading input video sub-
chunks 234 of the input video chunk 233 from the resource
manager 216. The slave transcoders 220 feed the video sub-
chunks 234 to the video decoder 510 and feed the YUV
frames to the encoder 512. The slave transcoders 220 con-
tinue to read input video subchunks 234 from the resource
manager 216 until it reaches the last subchunk 234 of the
input video chunk 233. Once the slave transcoder 220 has
transcoded all of the subchunks 234 of an input video chunk
233, the slave transcoders 220 can assemble the output video
subchunks 235 into an output video chunk 236 and can write
the output video chunk 236 to the resource manager 216.
Additionally or alternatively, the slave transcoder 220 returns
transcoded output video subchunks 235 to the resource man-
ager 216. In some implementations, the slave transcoder 220
waits until it has transcoded all of the video subchunks 233
prior to returning the output video subchunks 235. In other

US 9,179,183 B2

15

implementations, the slave transcoder 220 returns output
video subchunks 235 to the resource manager 216 as they
become available.

In some implementations the slave transcoders 220 are
configured to handle damaged input video chunks 233. When
a slave transcoder 220 receives a damaged an input video
subchunk 234 (e.g., an input video chunk 234 marked as
“BaD), the slave transcoder 220 stops transcoding the input
video subchunk 234 and discards the input video chunk 233
and any output video subchunks 235 that the slave transcoder
220 had already transcoded. The slave transcoder 220 then
creates a replacement output video chunk 236 using the pre-
defined sync/key frames and writes the replacement video
chunk 236 to the resource manager 216. The slave transcoder
220 can flag the replacement output video chunk as such. The
resource manager 216 then updates the state of the slave
transcoder 220 to available.

In some implementations, a slave transcoder 220
transcodes an input video chunk 233 that is to be transcoded
by transcoding at least a portion of the input video chunk 233
immediately preceding the input video chunk 233 to be
transcoded and then transcoding the input video chunk 233 to
be transcoded. In these implementations, the slave transcoder
220 outputs a single output video chunk 236 that corresponds
to the input video chunk 233 to be transcoded. In operation,
the resource manager 216 feeds at least a portion of the input
video chunk 233 preceding the input video chunk 233 to be
transcoded to the decoder 512 followed by the input video
chunk 233 that is to be transcoded. Thus, each slave
transcoder 220 transcodes input video subchunks 234 from
two consecutive input video chunks 233. In some of these
implementations, the slave transcoder 220 transcodes the
entire input video chunk 233 preceding the input video chunk
233 to be transcoded prior to transcoding the input video
chunk 233 to be transcoded. In other implementations, a slave
transcoder 220 transcodes later input video subchunks 234 of
the input video chunk 233 preceding the input video chunk
233 to be transcoded (e.g., the final three subchunks 234)
prior to transcoding the input video chunk 233 to be
transcoded. In either case, when the slave transcoder 220
finishes transcoding the input video subchunks 234 of both
input video chunks 233, the slave transcoders 220 discards
the output video subchunks 235 corresponding to the preced-
ing input video chunk 233 and returns the output video sub-
chunks 235 corresponding to the input video chunk 233 to be
transcoded. The slave transcoders 220 can implement the
foregoing techniques to avoid sudden discontinuity in quality
for the initial key or sync frame in the output video chunk 236
for single pass transcoding. The resource manager 216 may
feed the first input video chunk 233 of'the input media stream
233 to the m slave transcoders twice. Thereafter, the resource
manager 216 feeds consecutive input video chunks 233 to the
set of m slave transcoders 220 assigned to transcode the
second of the consecutive input video chunks 233.

Referring back to FIG. 2A, in some implementations the
transcoding server 200 is designed to recover from fatal errors
in one or more of the components thereof. Fatal errors can
occur in the slave transcoders 220, the resource manager 216,
the subchunk module 214, the streaming agent 212, and/or
the live chunk manager 218.

One type of error is the failure of a slave transcoder 220.
For example, the resource manager 216 may assign a
transcoding job to an already failed slave transcoder 220. In
implementations where the resource manager 216 assigns
transcoding jobs to multiple transcoders 220, the redundant
assignments alleviate any concerns of a non-functioning

10

15

20

25

30

35

40

45

50

55

60

65

16

slave transcoder 220. Once a failed transcoder 220 is discov-
ered, the failed transcoder 220 can be restarted.

An issue may arise where the resource manager 216 fails.
For example, a slave transcoder 220 may be unable to read
input video subchunks 234 from the resource manager 216. In
such a scenario, the slave transcoder 220 terminates the cur-
rent transcoding job and changes its state to “available” and
reports its current state. In another scenario, the slave
transcoder 220 may be unable to write output video sub-
chunks 235 to the resource manager 216. In such a scenario,
the slave transcoder 220 ignores the failure, completes the
transcoding job, and updates its state to available. In another
example, the subchunk module 214 may be unable to write
input audio chunks 237 and/or input video chunks 233 to the
resource manager 216. In this scenario, the subchunk module
214 can ignore the failure and can continue to attempt to write
the input chunks 233, 237 to the resource manager 216 as if
the failure never occurred. If, however, the subchunk module
214 is unable to read output video chunks 236 over a given
timeout period, the subchunk module 214 can generate a
“BaD” output video chunk 236 to replace the missing output
video chunks 236. Eventually, a failed resource manager 216
can be restarted. After the restart, the resource manager 216
can discard any input video subchunks 234 received as parts
of input video chunks 233 that are already being processed.
The resource manager 216 can begin processing the input
video subchunks 234 once it begins receiving a new input
video chunk 233.

Another type of error is the failure of the subchunk module
214. When the subchunk module 214 fails, any slave
transcoders 220 performing transcoding jobs can terminate
the current transcoding job and update their respective states
to available and the resource manager 216 can stop assigning
transcoding jobs to slave transcoders 220. In this scenario, the
live chunk manager 218 stops receiving the output media
stream 239 and the streaming agent 212 stops delivering the
input media stream 232. When the subchunk module 214
fails, the subchunk module 214 is eventually restarted and the
operation of the other components can resume operation.

An issue may arise where the stream agent 212 fails. In this
scenario, the other components can continue operation and
attempt to transcode input media streams 232. Because, how-
ever, the stream agent 212 is in a failed state, the subchunk
module 214 does not receive the input media stream 232. The
remaining components are unaffected. Once the stream agent
212 restarts, the subchunk module 214 can begin receiving
input media streams 232 and transcoding can commence.

Another type of error is the failure of the live chunk man-
ager 218. When the live chunk manager 218 fails the rest of
the components can continue to transcode input media
streams 232 to output media streams 234. In this scenario, the
subchunk module 214 can attempt to write portions of the
output media streams 239 to the live chunk manager 218.
When the subchunk module 214 cannot write to the live
chunk manager 218, the subchunk module 214 can discard
the available portions of the output media stream 239. Once
the live chunk manager 218 restarts, the subchunk module
214 can commence delivery of the output media stream 239.

The foregoing types of errors are provided for example.
The transcoding server 200 can encounter other types of
errors as well. The techniques by which the transcoding
server 200 handles errors can vary as well.

FIG. 6 illustrates an exemplary set of operations for a
method 600 for delivering an output media stream 239 to a
user device 100. The method 600 is explained with respect to

US 9,179,183 B2

17

the components of the transcoding server 200 discussed
above. The method 600, however, may be executed by any
suitable device.

At operation 610, the transcoding server 200 receives
transcoding instructions. The transcoding instructions can
include a stream identifier of an input media stream 232 to
encode and the encoding parameters for encoding the input
media stream 232. The transcoding instructions can be
received from a user device 100, from another device, or
internally. For example, a user device 100 can request a live
stream of a channel. In another example, the transcoding
server 200 may be set up to make any number of channels and
video-on-demand contents available at different encoding
parameters. The stream identifier can identify a channel feed
or media content to transcode. The encoding parameters indi-
cate the target encoding for the output media stream 239.

Atoperation 612, the resource manager 216 configures the
slave transcoders 220. For example, the resource manager
216 can set the output bit rate of the slave transcoders 220.
The resource manager 216 may also establish the queue 220’
of slave transcoders 220 as well.

At operation 614, the subchunk module 214 receives the
input media stream 232 by way of the streaming agent 212.
The streaming agent 212 can receive the input media stream
232 from any suitable content source 120. For example, the
streaming agent 212 may receive the content from a cable
provider, a network, individuals, a movie studio, or any other
suitable source.

Atoperation 616, the subchunk module 214 demultiplexes
the input media stream 232 into an audio portion 232" and a
video portion 232'. At operation 618, the subchunk module
splits the audio portion 232" into input audio chunks 237 and
the video portion 232" into input video chunks 233. The input
video chunks 233 and the input audio chunks 237 are splitinto
equal size chunks (e.g., 5 millisecond seconds). Each input
chunk 233, 237 may be assigned a chunk ID and flagged with
its chunk type.

At operation 620, the subchunk module 214 transcodes the
input audio chunks 237. The subchunk module 214 can
transcode the input audio chunks 237 according to the desired
encoding parameters for the audio portion of the output media
stream 239. The subchunk module 214 transcodes the input
audio chunks 237 into output audio chunks 238.

Atoperation 622, the subchunk module 214 splits the input
video chunks 233 into input video subchunks 234. The input
video subchunks 234 are of equal length (e.g., 0.05 millisec-
ond segments). The subchunk module 214 can assign a sub-
chunk ID to each input video subchunk 234. The subchunk
module 214 can write the input video subchunks to the
resource manager 216. At operation 624, the resource man-
ager 216 and the slave transcoders 220 transcode the input
video chunks 233.

FIG. 7 illustrates a set of operations for a method for
transcoding an input video chunk 233. At operation 710, the
resource manager 216 dequeues m slave transcoders 220
from the queue 220", where m is an integer greater than or
equal to one. At operation 712, the resource manager 216
assigns the input video chunk 233 to the m slave transcoders
220. The resource manager 216 can update the status of the
each of the m slave transcoders to busy.

In some implementations, the m slave transcoders 220
obtain at least some subchunks 234 of the input video chunk
233 immediately preceding the input video chunk 233 to be
transcoded, as shown at operation 714. The m slave transcod-
ers 220 can read all of the subchunks 234 of the preceding

5

10

15

20

25

30

35

40

45

50

55

60

65

18

input video chunk 233 or the last one or more subchunks 234
of the preceding input video chunk 233 from the resource
manager 216.

At operation 716, the m slave transcoders 220 obtains the
input video subchunks 234 of the input video chunk 233 to be
transcoded. The input video subchunks 234 can be read from
the resource manager 216 sequentially, such that the slave
transcoders 220 read earlier input video subchunks 234 prior
to subsequent input video subchunks 234. In some implemen-
tations, the m slave transcoders 220 read earlier input video
subchunks 234 while later input video subchunks 234 are
being received by the subchunk module 214.

Atoperation 718, the m slave transcoders 220 transcode the
input video subchunks 234. In some implementations, each of
the m slave transcoders 220 decodes an input video subchunk
234 into YUV frames and then encodes the YUV frames into
output video subchunk 235. The m slave transcoders 220 can
work independently and at their own respective speeds. As a
slave transcoder 220 finishes decoding an input video sub-
chunk 234, it can obtain the next input video subchunk 234
and begin decoding the next input video subchunk 234. Simi-
larly, as a slave transcoder 220 encodes an output video sub-
chunk 235, the slave transcoder 220 can begin decoding the
next available input video subchunks 234 as soon as the slave
transcoder 220 finishes decoding the YUV frames. As previ-
ously indicated, in some implementations, the m slave
transcoders 220 begin transcoding input video subchunks 234
of a preceding input video chunk 233 before transcoding the
input video subchunks 234 of the input video chunk 233 to be
transcoded. When transcoding the input video subchunks 234
of'the preceding input video chunk 233, the slave transcoders
220 can discard the output video subchunks 235 correspond-
ing thereto.

At operation 720, the resource manager 216 determines
whether one of the m slave transcoders 220 has finished the
transcoding job (i.e., transcoding the input video subchunk
233). If not, the m slave transcoders 220 continue transcoding
the input video subchunks.

When one of the slave transcoders 220 has completed
transcoding the entire input video chunk 233, the slave
transcoder 220 returns an output video chunk 236, as shown
at operation 722. Once a slave transcoder 220 has completed
transcoding all of the input video subchunks 234 of an input
video chunk 233, the slave transcoder 220 assembles an out-
put video chunk 236 from the output video subchunks 235.
The slave transcoder 220 returns the output video chunk 236
to the resource manager 216. In some implementations, the
slave transcoders 220 can return output video subchunks 235
to the resource manager 216 and the resource manager 216
assembles the output video subchunks 235 into output video
chunks 236.

At operation 724, the resource manager 216 stops the
remaining m-1 slave transcoders 220 and discards the output
video subchunks 235 transcoded by the m~-1 slave transcod-
ers 220. The resource manager 216 can return the output
video chunk 236 to the subchunk module 214. At operation
726, the resource manager 216 updates the status of the m
slave transcoders 220 to “available”. The resource manager
216 can enqueue the m slave transcoders 220 onto the queue
220"

Referring back to FIG. 6, the resource manager 216 and the
slave transcoders 220 continuously transcode the input video
chunks 233 as they are received and chunked by the subchunk
module 214. It is noted that the subchunk module 214 can
transcode audio chunks 237 while the resource manager 216
and the slave transcoders 220 transcode the input video
chunks 233.

US 9,179,183 B2

19

At operation 626, the subchunk module 214 assembles the
output video chunks 236 and the output audio chunks 238 into
the output media stream 239. As previously discussed, the
subchunk module 214 can generate output media streams 239
according to one or more protocols (e.g., HLS and/or DASH).
At operation 628, the subchunk module 214 publishes the
output media stream 239 to the live chunk manager 218. The
live chunk manager 218 can transmit the output media stream
239 to one or more downstream user devices 100.

The order of the operations performed in the FIGS. 6 and 7
is not essential. Many ofthe operations occur concurrently for
different portions of an input media stream 232. For instance,
transcoding audio and video chunks can be performed simul-
taneously and there may be instances where multiple video
chunks 233 are being transcoded at the same time by different
slave transcoders 220. Many of the operations described
above can be performed in parallel and/or serially. For
instance, a slave transcoder 220 can receive video subchunks
234 while transcoding other input video subchunks 234.
Similarly, audio chunks 238 can be transcoded at the same
time is video chunks 233. Furthermore, the methods 600 and
700 may include alternate or additional operations.

Various implementations of the systems and techniques
described here can be realized in digital electronic and/or
optical circuitry, integrated circuitry, specially designed
ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation
in one or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or gen-
eral purpose, coupled to receive data and instructions from,
and to transmit data and instructions to, a storage system, at
least one input device, and at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the terms “machine-readable medium” and
“computer-readable medium” refer to any computer program
product, non-transitory computer readable medium, appara-
tus and/or device (e.g., magnetic discs, optical disks, memory,
Programmable Logic Devices (PLDs)) used to provide
machine instructions and/or data to a programmable proces-
sor, including a machine-readable medium that receives
machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to pro-
vide machine instructions and/or data to a programmable
processor.

Implementations of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina-
tions of one or more of them. Moreover, subject matter
described in this specification can be implemented as one or
more computer program products, i.e., one or more modules
of computer program instructions encoded on a computer
readable medium for execution by, or to control the operation
of, data processing apparatus. The computer readable
medium can be a machine-readable storage device, a
machine-readable storage substrate, amemory device, acom-
position of matter effecting a machine-readable propagated
signal, or a combination of one or more of them. The terms
“data processing apparatus”, “computing device” and “com-
puting processor” encompass all apparatus, devices, and

10

15

20

25

30

35

40

45

50

55

60

65

20

machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors
or computers. The apparatus can include, in addition to hard-
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, or a combination of one or more
of them. A propagated signal is an artificially generated sig-
nal, e.g., a machine-generated electrical, optical, or electro-
magnetic signal that is generated to encode information for
transmission to suitable receiver apparatus.

A computer program (also known as an application, pro-
gram, software, software application, script, or code) can be
written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a
computing environment. A computer program does not nec-
essarily correspond to a file in a file system. A program can be
stored in a portion of a file that holds other programs or data
(e.g., one or more scripts stored in a markup language docu-
ment), in a single file dedicated to the program in question, or
in multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a per-
sonal digital assistant (PDA), a mobile audio player, a Global
Positioning System (GPS) receiver, to name just a few. Com-
puter readable media suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g.,, EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry.

To provide for interaction with a user, one or more aspects
of'the disclosure can be implemented on a computer having a
display device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying infor-
mation to the user and optionally a keyboard and a pointing
device, e.g., a mouse or a trackball, by which the user can

US 9,179,183 B2

21

provide input to the computer. Other kinds of devices can be
used to provide interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser on
auser’s client device in response to requests received from the
web browser.

One or more aspects of the disclosure can be implemented
in a computing system that includes a backend component,
e.g., as a data server, or that includes a middleware compo-
nent, e.g., an application server, or that includes a frontend
component, e.g., a client computer having a graphical user
interface or a Web browser through which a user can interact
with an implementation of the subject matter described in this
specification, or any combination of one or more such back-
end, middleware, or frontend components. The components
of'the system can be interconnected by any form or medium
of digital data communication, e.g., a communication net-
work. Examples of communication networks include a local
area network (“LAN”) and a wide area network (“WAN™), an
inter-network (e.g., the Internet), and peer-to-peer networks
(e.g., ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some implementa-
tions, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
disclosure or of what may be claimed, but rather as descrip-
tions of features specific to particular implementations of the
disclosure. Certain features that are described in this specifi-
cation in the context of separate implementations can also be
implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in mul-
tiple implementations separately or in any suitable sub-com-
bination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can in some cases be excised from the combination,
and the claimed combination may be directed to a sub-com-
bination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multi-tasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

10

15

20

25

30

35

40

45

50

55

60

65

22

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims. For example, the
actions recited in the claims can be performed in a different
order and still achieve desirable results.

What is claimed is:

1. A method comprising:

receiving an input media stream encoded according to a

first set of encoding parameters;

splitting a video portion of a received portion of the input

media stream into input video chunks;

for each input video chunk of the video portion of the input

media stream:

assigning the input video chunk to a plurality of slave
transcoders that transcode data from the first set of
encoding parameters to a second set of encoding
parameters;

splitting the input video chunk into input video sub-
chunks;

separately feeding each input video subchunk to each
slave transcoder of the plurality of transcoders;

when one of the plurality of slave transcoders completes
transcoding each of the input video subchunks into
corresponding output video subchunks, commanding
the other slave transcoders of the plurality of
transcoders to stop transcoding the input video sub-
chunks of the input video chunk; and

assembling the output video subchunks into an output
video chunk corresponding to the input video chunk;
and

assembling the output video chunks into an output media

stream.

2. The method of claim 1, further comprising:

splitting a received portion of the input video chunk into

input video subchunks while still receiving a remaining
portion of the input video chunk;

feeding at least one input video subchunk to the slave

transcoders while still receiving the remaining portion
of the input video chunk; and

assembling the output video chunks into the output media

stream while splitting any remaining portion of the
video portion of the input media stream into input video
chunks.
3. The method of claim 1, wherein each slave transcoder
includes a slave decoder and a slave encoder, the slave
encoder encoding a first input video subchunk while the slave
decoder decodes a second input video subchunk.
4. The method of claim 1, further comprising, after com-
manding the other slave transcoders of the plurality of
transcoders to stop transcoding, identifying all of the slave
transcoders as being available to receive another input video
chunk.
5. The method of claim 1, further comprising:
demultiplexing the input media stream into the video por-
tion and an audio portion of the input media stream; and

splitting the audio portion of the input media stream into
input audio chunks, each input audio chunk respectively
corresponding to one of the input video chunks of the
video portion.

6. The method of claim 5, wherein each corresponding pair
of'input audio chunk and input video chunk begins at a same
time within the input media stream and has a substantially
same time length.

7. The method of claim 6, further comprising:

for each input audio chunk:

US 9,179,183 B2

23

decoding the input audio chunk into audio samples;
when a lost audio packet within the input audio chunk is
detected, inserting a silent audio sample into the audio
samples at a location corresponding to the lost audio
packet; and
encoding the audio samples into an output audio chunk.
8. The method of claim 7, wherein assembling the output
video chunks into the output video stream comprises aligning
each output audio chunk with a corresponding output video
chunk.
9. The method of claim 1, further comprising:
retrieving the plurality of slave transcoders from a queue of
available transcoders; and
when one of the slave transcoders of the plurality of slave
transcoders completes transcoding an assigned input
video chunk, releasing the plurality of transcoders back
into the queue of transcoders.
10. The method of claim 1, further comprising:
for each input video chunk:
obtaining at least one preceding input video subchunk of
a preceding input video chunk that immediately pre-
cedes the input video chunk; and

feeding the at least one preceding input video subchunk
to the plurality of slave transcoders before feeding the
input video subchunks of the input video chunk.

11. A transcoding server comprising:

a non-transitory computer readable medium storing com-
puter readable instructions;

a plurality of slave transcoders that transcode data from a
first set of encoding parameters to a second set of encod-
ing parameters; and

a processing device in communication with the computer
readable medium and executing the computer readable
instructions, the computer readable instructions causing
the processing device to perform operations comprising:
receiving an input media stream encoded according to a

first set of encoding parameters;

splitting a video portion of a received portion of the input

media stream into input video chunks;

for each input video chunk of the video portion of the
input media stream;

assigning the input video chunk to a plurality of slave
transcoders that transcode data from the first set of
encoding parameters to a second set of encoding
parameters;

splitting the input video chunk into input video sub-
chunks;

separately feeding each input video subchunk to each
slave transcoder of the plurality of transcoders;

when one of the plurality of slave transcoders com-
pletes transcoding each of the input video sub-
chunks into corresponding output video sub-
chunks, commanding the other slave transcoders of
the plurality of transcoders to stop transcoding the
input video subchunks of the input video chunk;
and

assembling the output video subchunks into an output
video chunk corresponding to the input video
chunk; and

assembling the output video chunks into an output

media stream.

12. The server of claim 11, wherein the operations further

comprise:

20

25

40

45

50

24

splitting a received portion of the input video chunk into
input video subchunks while still receiving a remaining
portion of the input video chunk;

feeding at least one input video subchunk to the slave

transcoders while still receiving the remaining portion
of the input video chunk; and

assembling the output video chunks into the output media

stream while splitting any remaining portion of the
video portion of the input media stream into input video
chunks.
13. The server of claim 11, wherein each slave transcoder
includes a slave decoder and a slave encoder, the slave
encoder encoding a first input video subchunk while the slave
decoder decodes a second input video subchunk.
14. The server of claim 11, wherein the operations further
comprise, after commanding the other slave transcoders of
the plurality of transcoders to stop transcoding, identifying all
of' the slave transcoders as being available to receive another
input video chunk.
15. The server of claim 11, wherein the operations further
comprise:
demultiplexing the input media stream into the video por-
tion and an audio portion of the input media stream; and

splitting the audio portion of the input media stream into
input audio chunks, each input audio chunk respectively
corresponding to one of the input video chunks of the
video portion.

16. The server of claim 15, wherein each corresponding
pair of input audio chunk and input video chunk begins at a
same time within the input media stream and has a substan-
tially same time length.

17. The server of claim 16, wherein the operations further
comprise:

for each input audio chunk:

decoding the input audio chunk into audio samples;

when a lost audio packet within the input audio chunk is
detected, inserting a silent audio sample into the audio
samples at a location corresponding to the lost audio
packet; and

encoding the audio samples into an output audio chunk.

18. The server of claim 17, wherein assembling the output
video chunks into the output video stream comprises aligning
each output audio chunk with a corresponding output video
chunk.

19. The server of claim 11, wherein the operations further
comprise:

retrieving the plurality of slave transcoders from a queue of

available transcoders; and

when one of the slave transcoders of the plurality of slave

transcoders completes transcoding an assigned input
video chunk, releasing the plurality of transcoders back
into the queue of transcoders.

20. The server of claim 11, wherein the operations further
comprise:

for each input video chunk:

obtaining at least one preceding input video subchunk of
a preceding input video chunk that immediately pre-
cedes the input video chunk; and

feeding the at least one preceding input video subchunk
to the plurality of slave transcoders before feeding the
input video subchunks of the input video chunk.

#* #* #* #* #*

